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LUCOCORTICOIDS INTERACT WITH EMOTION-INDUCED
ORADRENERGIC ACTIVATION IN INFLUENCING DIFFERENT

EMORY FUNCTIONS
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bstract—Extensive evidence from rat and human studies in-
icates that glucocorticoid hormones influence cognitive per-
ormance. Posttraining activation of glucocorticoid-sensitive
athways dose-dependently enhances the consolidation of

ong-term memory. Glucocorticoid effects on memory consoli-
ation rely on noradrenergic activation of the basolateral amyg-
ala and interactions of the basolateral amygdala with other
rain regions. Glucocorticoids interact with the noradrenergic
ystem both at a postsynaptic level, increasing the efficacy of
he �-adrenoceptor-cyclic AMP/protein kinase A system, as well
s presynaptically in brainstem noradrenergic cell groups that
roject to the basolateral amygdala. In contrast, memory re-

rieval and working memory performance are impaired with
igh circulating levels of glucocorticoids. Glucocorticoid-

nduced impairment of these two memory functions also re-
uires the integrity of the basolateral amygdala and the norad-
energic system. Such critical interactions between glucocorti-
oids and noradrenergic activation of the basolateral amygdala
ave important consequences for the role of emotional arousal

n enabling glucocorticoid effects on these different memory
unctions. © 2005 Published by Elsevier Ltd on behalf of IBRO.

ey words: amygdala, corticosterone, emotional arousal,
emory consolidation, memory retrieval, working memory.

drenal hormones (i.e. catecholamines and glucocorti-
oids) are secreted during emotionally arousing events
nd influence, together with other components of the
tress system, the organism’s ability to cope with stress.
here is extensive evidence that these hormones have
lso profound effects on cognitive functioning (McGaugh
nd Roozendaal, 2002). Immediate posttraining systemic

njections of epinephrine or norepinephrine to rats enhance
he consolidation and/or storage of novel information (Gold
nd van Buskirk, 1975). Recent evidence indicates that

Corresponding author. Tel: �1-949-824-5250; fax: �1-949-824-2952.
-mail address: broozend@uci.edu (B. Roozendaal).
bbreviations: BLA, basolateral complex of the amygdala; cAMP,
yclic AMP; CEA, central nucleus of the amygdala; GR, glucocorticoid
eceptor; mPFC, medial prefrontal cortex; MR, mineralocorticoid re-
n
eptor; NTS, nucleus of the solitary tract; PKA, protein kinase A; RU
8486, mifepristone.

306-4522/06$30.00�0.00 © 2005 Published by Elsevier Ltd on behalf of IBRO.
oi:10.1016/j.neuroscience.2005.07.049

901
pinephrine also enhances memory consolidation for emo-
ionally arousing material in human subjects (Cahill and
lkire, 2003). It is now also well established that glucocor-

icoid hormones dose-dependently enhance memory con-
olidation in animal and human subjects (de Kloet et al.,
999; Roozendaal, 2000). Blockade of glucocorticoid pro-
uction with the synthesis inhibitor metyrapone impairs
emory consolidation (Roozendaal et al., 1996b; Maheu
t al., 2004) and prevents stress- and epinephrine-induced
emory enhancement (Roozendaal et al., 1996a; Liu et
l., 1999), whereas acute systemic administration of glu-
ocorticoids enhances memory when given either before
r immediately after a training experience (Flood et al.,
978; Roozendaal and McGaugh, 1996; Sandi and Rose,
997; Roozendaal et al., 1999b; Buchanan and Lovallo,
001; Abercrombie et al., 2003). In addition to such en-
ancing effects of acutely administered glucocorticoids on
emory consolidation, elevated levels of glucocorticoids at

he time of retention testing impair the retrieval of previ-
usly acquired information (de Quervain et al., 1998, 2000;
olf et al., 2001; Roozendaal et al., 2003, 2004a,b). High

evels of glucocorticoids also impair working memory perfor-
ance (Lupien et al., 1999; Wolf et al., 2001; Roozendaal
t al., 2004c).

Research in our laboratory has focused primarily on
he brain systems mediating such stress hormone effects
n memory. Extensive evidence indicates that the amyg-
ala plays a key role in mediating epinephrine effects on
emory consolidation. However, as epinephrine does not

eadily cross the blood–brain barrier, a peripheral–central
athway is involved in mediating epinephrine effects on
mygdala activity in modulating memory consolidation
McGaugh et al., 1996; Williams and Clayton, 2001). Sys-
emic epinephrine can activate peripheral �-adrenoceptors
ocated on vagal afferents terminating in the nucleus of the
olitary tract (NTS). In turn, noradrenergic cell groups in
he NTS send direct projections to the amygdala (Fallon
nd Ciofi, 1992), or indirectly via the locus coeruleus (Wil-

iams and Clayton, 2001). The evidence that a blockade of
-adrenoceptors in the amygdala prevents memory en-
ancement induced by systemic injections of epinephrine
Liang et al., 1986) indicates that epinephrine effects on
emory consolidation depend critically on noradrenergic
ctivity of the amygdala. There is now extensive evidence
hat several neuromodulatory and neurotransmitter sys-
ems interact with the noradrenergic system of the amyg-
ala in influencing memory consolidation (McGaugh et al.,
996; McGaugh, 2000, 2004). As discussed below the

eurobiological mechanisms underlying the acute effects
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f glucocorticoids on memory consolidation are highly sim-
lar to those of epinephrine in that they require noradren-
rgic activation within the amygdala that influences mem-
ry consolidation via interactions with other brain regions.
he findings suggest also that the impairing effects of
lucocorticoids on memory retrieval and working memory
epend on noradrenergic activation within the amygdala.
uch critical interactions between glucocorticoids and nor-
drenergic activation of the amygdala have important con-
equences for the role of emotional arousal in enabling
lucocorticoid effects on these different memory functions.

lucocorticoid effects on memory consolidation:
nvolvement of the amygdala

nlike catecholamines, glucocorticoid hormones readily
nter the brain and bind directly to two intracellular types of
drenal steroid receptors (Reul and de Kloet, 1985; de
loet, 1991). Glucocorticoid receptors (GRs) have a low
ffinity for corticosterone and become occupied only dur-

ng stress and at the circadian peak, when circulating
evels of glucocorticoids are high. In contrast, mineralocor-
icoid receptors (MRs) have a 10-fold higher affinity for
orticosterone and are almost saturated under basal con-
itions (Reul and de Kloet, 1985). Extensive evidence

ndicates that glucocorticoid effects on memory consolida-
ion involve a selective activation of GRs. For example,
mmediate posttraining i.c.v. or local infusions of a GR
ntagonist, but not an MR antagonist, impair memory con-
olidation (Oitzl and de Kloet, 1992; Roozendaal et al.,
996c; 1999a; Roozendaal and McGaugh, 1997a,b). Fur-
hermore, genetic disruption of GR functioning interferes
ith memory consolidation processes (Oitzl et al., 2001).

Both MRs and GRs are expressed in the brain. In
ontrast to MRs, which are most densely expressed in
imbic areas, GRs are ubiquitous and are found both in
eurons and in glial cells (de Kloet, 1991). Recent findings
uggest that glucocorticoids may act in many different,
hough interacting, brain regions to enhance memory con-
olidation. Our studies have focused primarily on the
mygdala, and interactions of the amygdala with other
rain regions, as there is extensive evidence that the
mygdala is a critical component of the neural circuitry
egulating the effects, on memory consolidation, of drugs
nd hormones affecting several receptor systems (Mc-
augh et al., 1996; McGaugh, 2000, 2004). Furthermore,
s noted above, the amygdala mediates epinephrine as
ell as glucocorticoid effects on memory consolidation.
elective NMDA-induced lesions of the amygdala restricted

o the basolateral complex (BLA; consisting of the lateral,
asal and accessory basal nuclei) block 48-h inhibitory avoid-
nce retention enhancement induced by posttraining sys-
emic injections of the synthetic glucocorticoid dexametha-
one (Roozendaal and McGaugh, 1996). In contrast, lesions
f the adjacent central nucleus (CEA), made with ibotenic
cid, do not block the dexamethasone-induced memory en-
ancement. Selective BLA lesions also block memory im-
airment induced by an i.c.v. administration of a GR an-

agonist (Roozendaal et al., 1996c). Posttraining infusions

f the specific GR agonist RU 28362 administered into the m
LA enhance retention in a dose-dependent fashion, but
re ineffective when administered into the CEA
Roozendaal and McGaugh, 1997a), whereas intra-BLA,
ut not intra-CEA, infusions of the GR antagonist RU
8486 (mifepristone) impair retention in a water-maze spa-
ial task (Roozendaal and McGaugh, 1997a). Moreover,
ntra-BLA infusions of RU 38486 attenuate the facilitating
ffects of chronic corticosterone administration on contex-
ual fear conditioning (Conrad et al., 2004). These findings
ndicate that the modulatory effects of glucocorticoids on

emory consolidation are mediated, in part, by direct bind-
ng to GRs in the BLA. Such a selective involvement of the
LA in regulating glucocorticoid effects on memory con-
olidation is consistent with the evidence that the BLA is
lso the critical subdivision of the amygdala mediating the
odulatory effects of drugs affecting several other neuro-

ransmitter systems (McGaugh, 2004).
Many findings from our laboratory indicate that BLA

ctivity enhances memory by influencing consolidation
rocesses occurring in other brain regions, including the
ippocampus (McGaugh, 2002, 2004). It is well estab-

ished that the hippocampus has a high density of adrenal
teroid receptors (Reul and de Kloet, 1985) and that the
ippocampus is involved in spatial/contextual learning and
emory (Morris et al., 1982; Eichenbaum and Otto, 1992).
urthermore, cumulative evidence indicates that hip-
ocampal adrenal steroid receptors are involved in neuro-
lasticity (Foy et al., 1987; Diamond et al., 1992; Pavlides
t al., 1993; Korz and Frey, 2003) and memory consolida-

ion (de Kloet, 1991). We found that posttraining infusions
f the GR agonist RU 28362 into the dorsal hippocampus
nhance rat’s retention of inhibitory avoidance and that
retraining infusions of the antagonist RU 38486 impair
etention of water-maze spatial training (Roozendaal and
cGaugh, 1997b). Additionally, and most importantly, se-

ective BLA lesions block the memory-modulatory effects
f the intra-hippocampal infusions of drugs affecting GRs.
hese findings parallel those of electrophysiological stud-

es reporting that the BLA modulates long-term potentia-
ion in the hippocampus (Ikegaya et al., 1994, 1997; Akirav
nd Richter-Levin, 1999, 2002; Frey et al., 2001; Nakao et
l., 2004) and that BLA lesions block stress effects on
ippocampal long-term potentiation (Kim et al., 2001).

Other recent findings indicate similar interactions of the
LA with other brain regions. Posttraining infusions of RU
8362 into either the medial prefrontal cortex or nucleus
ccumbens enhance memory consolidation for inhibitory
voidance training; effects that are blocked by lesions of
he BLA (B. Roozendaal, J. R. McReynolds, C. K. McIntyre
nd J. L. McGaugh, unpublished observations). Thus,
hese findings indicate that although glucocorticoids may
ct in many different brain regions to enhance memory
onsolidation, the modulatory effects of such local glu-
ocorticoid administrations on memory consolidation de-
end on BLA activity. That is, influences from the BLA
ppear to be essential in enabling glucocorticoid effects on

emory consolidation involving other brain regions.
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lucocorticoid effects on memory consolidation:
nteractions with noradrenergic mechanisms in the
mygdala

he enhancing effects of glucocorticoids on memory con-
olidation depend on the integrity of the amygdala norad-
energic system. As shown in Fig. 1, microinfusions of
ntagonists for either �1- or �2-adrenoceptors adminis-

ered into the BLA shortly before inhibitory avoidance train-
ng block the memory-enhancing effects of posttraining
ystemic dexamethasone (Quirarte et al., 1997). Studies
sing in vivo microdialysis and HPLC have shown that
ootshock stimulation of the same intensity and duration as
sed for inhibitory avoidance training induces the release
f norepinephrine in the amygdala and that this increase in
orepinephrine levels varies directly with stimulus intensity
Galvez et al., 1996; Quirarte et al., 1998). Furthermore,
mygdala norepinephrine levels assessed following inhib-

tory avoidance training correlate with retention latencies
ested 24 h later (McIntyre et al., 2002), whereas posttrain-
ng infusions of norepinephrine or �-adrenoceptor agonists
dministered into the BLA enhance memory consolidation
Ferry et al., 1999; Hatfield and McGaugh, 1999). Other
xperiments using inhibitory avoidance training found that
oradrenergic activity within the BLA is also critical for the
emory-modulatory effects of GR activation in the hip-
ocampus (Roozendaal et al., 1999a). Unilateral infusions
f the �1-adrenoceptor antagonist atenolol into the BLA
lock the memory-enhancing effect of posttraining infu-
ions of the GR agonist RU 28362 administered into the
psilateral hippocampus but do not block the memory en-
ancement produced by posttraining infusions of RU
8362 into the contralateral hippocampus. These findings
rovide further evidence that �-adrenoceptor activity within
he BLA is critical in enabling glucocorticoid effects on

vehicle

dexamethasone (0.3 mg/kg)

systemic injections:

0

100

200

300

400

saline propranolol atenolol zinterol

basolateral amygdala infusions

re
te
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io

n 
la

te
nc

ie
s 

(s
)

ig. 1. Step-through latencies (mean�S.E.M.) in seconds on a 48-h
nhibitory avoidance retention test. Pretraining infusions of the non-
pecific �-adrenoceptor antagonist propranolol (0.5 �g in 0.2 �l), the

1-adrenoceptor antagonist atenolol (0.5 �g in 0.2 �l), or the �2-
drenoceptor antagonist zinterol (0.5 �g in 0.2 �l) into the BLA
locked the enhancing effect of immediate posttraining systemic in-

ections of dexamethasone (0.3 mg/kg, s.c.) on memory consolidation.
✶ P�0.01 compared with the corresponding vehicle group;
t
} P�0.01 compared with the saline-dexamethasone group. Re-
rinted from Quirarte et al., 1997.
emory consolidation and that this is the case even if the
lucocorticoids are administered in other brain regions. In
ccord with this evidence, electrophysiological studies
ave shown that a �-adrenoceptor antagonist infused into

he BLA blocks the effect of electrical stimulation of the
erforant path on dentate gyrus population-spike long-term
otentiation (Ikegaya et al., 1997). Furthermore, destruc-
ion of noradrenergic terminals in the brain produced by the
eurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine
DSP-4) prevents the effect of electrical stimulation of the
LA on hippocampal neuroplasticity (Akirav and Richter-
evin, 2002).

Glucocorticoids also interact directly with noradrener-
ic mechanisms within the BLA. Atenolol or the cyclic AMP
cAMP)-dependent protein kinase (PKA) inhibitor Rp-
AMPS administered into the BLA blocks the memory
nhancement induced by infusions of a GR agonist into the
LA (Roozendaal et al., 2002). In contrast, inactivation of

1-adrenoceptors in the BLA does not block GR agonist
ffects on memory consolidation. These findings suggest
hat glucocorticoid effects on memory consolidation re-
uire activation of the �-adrenoceptor-cAMP/PKA pathway

n the BLA. Other recent findings indicate that glucocorti-
oids enhance memory consolidation by potentiating the
fficacy of this signaling pathway in the BLA. Posttraining

ntra-BLA infusions of the �-adrenoceptor agonist clen-
uterol or the cAMP analog 8-Br-cAMP enhance memory
onsolidation in a dose-dependent fashion (Liang et al.,
995; Ferry et al., 1999). As shown in Fig. 2, the GR
ntagonist RU 38486 infused into the BLA shortly before
raining shifted the dose-response effects of clenbuterol
uch that a much higher dose of clenbuterol was required
o induce comparable memory enhancement (Roozendaal
t al., 2002). In contrast, the GR antagonist did not modify
he dose-response effects of 8-Br-cAMP, indicating that
AMP acts in the BLA downstream from the locus of inter-
ction of glucocorticoids with the �-adrenoceptor-cAMP/
KA pathway. Glucocorticoids may interact with postsyn-
ptic �1-adrenoceptors to potentiate �-adrenoceptor-
AMP/PKA efficacy. This conclusion is consistent with
vidence from studies investigating glucocorticoid–norepi-
ephrine interactions on cAMP accumulation in cortical areas
Stone et al., 1987; Duman et al., 1989).

In addition to interacting with the noradrenergic signal-
ng cascade at a postsynaptic level, glucocorticoids may
nfluence noradrenergic function by altering the synthesis
f norepinephrine (McEwen, 1987). Brainstem noradren-
rgic cell groups express high levels of GRs (Härfstrand et
l., 1987). Posttraining activation of GRs within noradren-
rgic cell groups of the NTS induces dose-dependent
emory enhancement for inhibitory avoidance training and

he �-adrenoceptor antagonist atenolol infused into the
LA concurrently blocks the enhancement (Roozendaal et
l., 1999b), suggesting that glucocorticoids increase the
ynthesis and subsequent release of norepinephrine in the
LA. In support of this view, in experiments using in vivo
icrodialysis and HPLC, we recently found that systemic
dministration of corticosterone after inhibitory avoidance

raining increased training-induced norepinephrine levels
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n the amygdala and that norepinephrine levels correlated
ith later retention performance (McIntyre et al., 2004).
he additional finding that corticosterone did not increase
mygdala norepinephrine levels of rats that did not receive

nhibitory avoidance training is consistent with the hypoth-
sis that glucocorticoids interact with emotional arousal in

nfluencing norepinephrine levels. Lastly, glucocorticoids
ay increase brain norepinephrine levels via an extraneu-

onal mechanism. Norepinephrine is rapidly taken up by
lial cells after its release through a specific catechol-
mine-transporter protein. Corticosterone is a potent inhib-

tor of this catecholamine uptake through a rapid, non-
enomic action (Grundemann et al., 1998). Thus, this ev-

dence indicates that glucocorticoids are intimately linked
ith noradrenergic mechanisms and permissively increase
oradrenergic neurotransmission in the brain during emo-
ional arousal. The interaction of glucocorticoids with the
oradrenergic system in the BLA in modulating memory
onsolidation is summarized in Fig. 3. Such interactions of
lucocorticoids with the noradrenergic system of the BLA
ay be necessary for regulating memory consolidation in
ther brain regions.

lucocorticoid effects on other memory functions

Memory retrieval. Although most studies investigat-
ng the effects of acutely administered glucocorticoids on

emory have focused on consolidation, other findings in-
icate that glucocorticoids are also involved in stress ef-
ects on other memory functions. Stress exposure or glu-
ocorticoids administered immediately after learning im-
air retention performance tested 30–60 min after training
Diamond et al., 1999; Woodson et al., 2003; Okuda et al.,
004a), i.e. at a time when the memory trace has not yet
een consolidated into long-term memory. These findings
trongly suggest that glucocorticoids can directly influence
etention performance. We have found that glucocorticoids

0

100

200

300

400 saline

clenbuterol (ng)
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vehicle RU 38486
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ig. 2. Step-through latencies (mean�S.E.M.) in seconds on a 48-h in
U 38486 (1 ng in 0.2 �l) into the BLA shifted the dose-response effec

1, 10 or 100 ng in 0.2 �l) on memory consolidation. (B) Pretraining
mmediate posttraining infusions of the synthetic cAMP analog 8-Br-c
orresponding saline group; }} P�0.01 compared with the correspon
an affect retention performance by influencing the re- p
rieval of previously acquired information. Stress exposure
r glucocorticoids administered systemically shortly before
esting on spatial/contextual tasks, 24 h after training, in-
uce temporary retention performance impairment (de
uervain et al., 1998; Roozendaal et al., 2003, 2004a). As

he same treatments administered shortly before training
o not affect either acquisition or retention performance
ssessed immediately after acquisition, the findings
trongly suggest that glucocorticoids impair retrieval of

ong-term memory. Likewise, stress-level glucocorticoid
dministration to human subjects impairs delayed, but not

mmediate, recall on episodic tasks (de Quervain et al.,
000; Wolf et al., 2001).

Extensive cognitive and neurobiological research indi-
ates that the hippocampus is an important brain region

mplicated in memory retrieval (Hirsch, 1974; Squire et al.,
001). Glucocorticoid-induced memory retrieval impair-
ent depends, in part, on GR activation in the hippocam-
us. The GR agonist RU 28362 administered into the
ippocampus shortly before probe-trial testing in a water
aze impairs retrieval of spatial memory (Roozendaal et
l., 2003). Additionally, recent findings from an H2

15O-
ositron-emission tomography study in human subjects

ndicate that a stress-level dose of cortisone reduces re-
ional blood flow in the right parahippocampal gyrus, an
ffect that correlates with memory retrieval impairment on
pisodic tasks (de Quervain et al., 2003).

The �-adrenoceptor antagonist propranolol adminis-
ered systemically 30 min before inhibitory avoidance re-
ention testing blocks memory retrieval impairment induced
y concurrent injections of corticosterone (Roozendaal et al.,
004a). Our finding that a �-adrenoceptor antagonist in-
used into the hippocampus prevents the impairing effect
f concurrent intra-hippocampal administration of a GR
gonist on memory retrieval indicates that glucocorticoids

nteract with noradrenergic mechanisms of the hippocam-
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voidance retention test. (A) Pretraining infusions of the GR antagonist
ediate posttraining infusions of the �-adrenoceptor agonist clenbuterol

infusions of RU 38486 did not modify the dose-response effects of
, 0.3 or 1.0 �g in 0.2 �l). ✶ P�0.05; ✶✶ P�0.01 compared with the
icle group. Reprinted from Roozendaal et al., 2002.
B

hibitory a
ts of imm
intra-BLA
AMP (0.1
us in regulating memory retrieval (Roozendaal et al.,
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004b). As stimulation of �1-adrenoceptors before reten-
ion testing with systemic injections of the selective agonist
amoterol induces retention impairment comparable to
hat seen after GR activation (Roozendaal et al., 2004b),
he findings provide additional evidence that glucocorticoid
ffects on memory retrieval impairment involve a facilita-
ion of noradrenergic mechanisms in the hippocampus.
owever, the recent findings that infusion of noradrenergic
gents (as well as drugs affecting several other classes of
eurotransmitters) into a variety of brain regions influences
emory retrieval (Barros et al., 2001) indicate that the
ippocampus does not act in isolation in retrieval. Highly
omparable to our findings on memory consolidation, BLA
esions block hippocampal glucocorticoid effects on mem-
ry retrieval (Roozendaal et al., 2003). Moreover, our find-

ng that a �-adrenoceptor antagonist infused into the BLA
efore retention testing blocks memory retrieval impair-
ent induced by concurrent intra-hippocampal infusions of
GR agonist (Roozendaal et al., 2004b) strongly suggests

hat noradrenergic activation of the BLA is essential for
nabling hippocampal glucocorticoid impairment of mem-
ry retrieval. Such findings indicating that the role of BLA
oradrenergic activity in regulating emotional arousal ef-
ects on hippocampus-dependent cognitive processes is
ot restricted to modulating memory consolidation but ex-
ends to memory retrieval suggest that a common neuro-
iological substrate may be involved and that stress effects
n these two cognitive phases may be regulated in a

Epinephrine
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Gluc

BASOLATER
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cAMPNTS/LC
(+)

b-adrenoceptor
antagonists

GR GR

ig. 3. Schematic summarizing the interactions of glucocorticoids with
s suggested by the findings of our experiments. Norepinephrine (NE
-adrenoceptors and �1-adrenoceptors at postsynaptic sites. The �-adr
he �1-adrenoceptor modulates the response induced by �-adreno
ystem via a coupling with �1-adrenoceptors. In addition, glucocortico
oradrenergic cell groups. �1, �1-adrenoceptor; �, �-adrenoceptor; LC
oordinated, albeit opposite, fashion (Roozendaal, 2002). n
Working memory. Stress exposure or glucocorticoid
dministration also profoundly impairs working memory
Arnsten and Goldman-Rakic, 1998; Wolf et al., 2001),
hich is known to rely on the integrity of the medial pre-

rontal cortex (mPFC) (Fuster, 1991). Mild uncontrollable
tress impairs performance of rats on a delayed alternation
ask, a task commonly used to assess working memory in
odents (Murphy et al., 1996). Such stress also increases
orepinephrine (and dopamine) turnover in the mPFC (Fin-

ay et al., 1995; Morrow et al., 2000). Excessive levels of
orepinephrine or an activation of the cAMP/PKA pathway

n the mPFC is known to induce working memory impair-
ent (Taylor et al., 1999; Arnsten, 2000). Like stress,
lucocorticoid administration impairs working memory.
he mPFC expresses high mRNA and protein levels for
Rs (Meaney and Aitken, 1985). We recently reported that

ystemic injections of stress doses of corticosterone or
ntra-mPFC administration of the GR agonist RU 28362
mpair delayed alternation performance (Roozendaal et al.,
004c). In addition, cortisol administration impairs working
emory performance in human subjects (Lupien et al.,
999; Young et al., 1999; Wolf et al., 2001). Glucocorti-
oids appear to interact with noradrenergic mechanisms in

nducing working memory impairment as systemic admin-
stration of the �-adrenoceptor antagonist propranolol
locks the impairing effect of corticosterone on working
emory (Roozendaal et al., 2004c). Furthermore, as sys-

emic administration of corticosterone increases levels of
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renergic system of the BLA at both presynaptic and postsynaptic sites
sed following training in aversively motivated tasks and binds to both
r is coupled directly to adenylate cyclase to stimulate cAMP formation.
imulation. Glucocorticoids may influence the �-adrenoceptor-cAMP
activate the noradrenergic system by activation of GRs in brainstem
oeruleus. Reprinted from Roozendaal, 2000.
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ndings suggest that corticosterone effects on working
emory impairment may involve a facilitation of noradren-
rgic mechanisms in the mPFC.

Glucocorticoid-induced working memory impairment
lso depends on interactions of the mPFC with the BLA.
e reported that BLA lesions block working memory im-

airment induced by either systemic injections of cortico-
terone or intra-mPFC infusions of RU 28362 (Roozendaal
t al., 2004c). Based on the evidence summarized above

ndicating that norepinephrine is critically involved in reg-
lating BLA activity, it seems likely that the effect of sys-
emically administered propranolol in preventing cortico-
terone-induced working memory impairment may also be
ediated, in part, by a blockade of �-adrenoceptor activity
ithin the BLA. The finding that BLA lesions alone do not
ffect working memory is in accord with previous evidence
Aggleton et al., 1989), and suggests that BLA activity is
nvolved in modulating stress or emotional arousal effects
n working memory involving other brain regions.

ole of emotional arousal in enabling glucocorticoid
ffects on memory functions

n the previous sections we summarized recent findings
ndicating that although glucocorticoids may exert op-
osing effects on different aspects of memory and act in
any different brain regions to induce these complex
ffects, all of these modulatory actions depend on nor-
drenergic activity within the BLA. Lesions of the BLA or

�-adrenoceptor antagonist administered either sys-
emically or into the BLA blocks glucocorticoid-induced
nhancement of memory consolidation (Roozendaal
nd McGaugh, 1996, 1997b; Quirarte et al., 1997;
oozendaal et al., 1999a, 2002 as well as the impair-
ent of memory retrieval and working memory

Roozendaal et al., 2003, 2004a,b,c). A corollary of this
iew is that glucocorticoids should affect memory only
nder experimental conditions that induce noradrener-
ic activation of the BLA. Extensive evidence indicates
hat the amygdala is activated during emotionally arous-
ng experiences (Campeau et al., 1991; Cahill et al.,
996; Adolphs and Tranel, 2000; Dolan, 2000; Pelletier
t al., 2005) and that emotional arousal induces norepi-
ephrine release in the BLA (Quirarte et al., 1998; McIn-
yre et al., 2002; van Stegeren et al., 2005). Thus,
motional arousal-induced BLA activation may be a crit-

cal step in enabling glucocorticoid effects in modulating
emory processes. Alternatively, it is possible that
asal noradrenergic activity of the BLA is sufficiently
igh to enable glucocorticoid effects on these memory
unctions. We recently investigated this issue in rats
rained on an object recognition task. Although no re-
arding or aversive stimulation is used during object

ecognition training (Ennaceur and Delacour, 1988), we
reviously found that such training induces modest nov-
lty-induced stress or arousal (Okuda et al., 2004a).
hus, rats habituated extensively to the training appa-
atus (in the absence of any objects) would be expected
o be less aroused by object recognition training than

ats not given prior habituation training. As shown in Fig. i
, in rats that were not previously habituated to the
xperimental context, corticosterone administered sys-

emically immediately after training enhanced 24-h re-
ention performance. In contrast, corticosterone did not
ffect 24-h retention for the same training experience of
ats that received extensive prior habituation to the ex-
erimental context and, thus, had decreased novelty-

nduced emotional arousal during training (Okuda et al.,
004a). The findings of that study further indicated that
lucocorticoid effects on impairment of memory retrieval
lso depend on the level of emotional arousal. Immedi-
te posttraining administration of corticosterone to non-
abituated rats, in doses that enhanced 24-h retention,

mpaired object recognition performance tested at a 1-h
etention interval, whereas corticosterone administered
fter training to well-habituated rats did not impair 1-h
etention.

To test whether training-induced noradrenergic activa-
ion is the critical component of emotional arousal in en-
bling glucocorticoid effects on memory consolidation, the
-adrenoceptor antagonist propranolol was co-adminis-

ered with the systemic corticosterone injection immedi-
tely after object recognition training to non-habituated
nimals. As expected on the basis of our findings using
ther types of emotionally arousing training, propranolol
dministered in a low and otherwise ineffective dose
locked the corticosterone-induced memory enhancement
Okuda et al., 2004b). Furthermore, propranolol adminis-
ered directly into the BLA blocked the enhancing effects of
orticosterone on memory consolidation. However, it is
ore interesting to determine whether the failure of corti-

osterone to enhance memory consolidation under low-
rousing conditions is due to insufficient training-induced
oradrenergic activation and, thus, whether pharmacolog-
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ig. 4. Posttraining administration of corticosterone (0.3, 1.0 or
.0 mg/kg, s.c.) enhanced 24-h object recognition performance of rats

hat were not previously habituated to the experimental context, but
ot of rats that received extensive prior habituation. The discrimination

ndex (mean�S.E.M.) was calculated as the difference in time explor-
ng the novel and familiar object, expressed as the ratio of the total time
pent exploring both objects. ✶✶ P�0.01 compared with the corre-
ponding vehicle group. Reprinted from Okuda et al., 2004a.
cal augmentation of noradrenergic activity would mimic
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he effects of emotional arousal and enable glucocorticoid
ffects on memory consolidation during such low-arousing
onditions. To examine this implication, low doses of the

2-adrenoceptor antagonist yohimbine, which increases
orepinephrine levels in the brain, were administered sys-
emically to well-habituated rats immediately after object
ecognition training. Posttraining injections of this dose of
ohimbine alone did not enhance memory consolidation
ut, importantly, simultaneously administered corticoste-
one induced dose-dependent enhancement of memory
onsolidation (Okuda et al., 2004b). Such observations
trongly suggest that because glucocorticoid effects on mem-
ry consolidation and other cognitive processes depend crit-

cally on interactions with noradrenergic mechanisms of the
LA (and possibly other brain regions), they only modulate
emory processes under emotionally arousing conditions

hat induce the release of norepinephrine.
Some recent findings in human subjects are consistent

ith the view that glucocorticoid effects on memory con-
olidation depend on the level of training-associated emo-
ional arousal. Buchanan and Lovallo (2001) reported that
ortisol administered shortly before training enhanced
ong-term memory of emotionally arousing, but not emo-
ionally neutral, pictures. Studies investigating the effects
n memory consolidation of posttraining administration of
pinephrine (Cahill and Alkire, 2003) or cold pressor stress
xposure, causing endogenous stress hormone activation
Cahill et al., 2003), obtained similar results. Furthermore,
t has been reported that enhanced human memory for
motionally arousing material depends on amygdala–hip-
ocampus interactions (Kilpatrick and Cahill, 2004; Kens-

nger and Corkin, 2004; Richardson et al., 2004) and is
locked by amygdala lesions or the administration of �-ad-
enoceptor antagonists (Cahill et al., 1994, 1995 van Ste-
eren et al., 2005). Other recent findings in human sub-

ects indicate that glucocorticoids or psychosocial stress
xposure may selectively impair retrieval of emotionally
rousing, but not emotionally neutral, information (Kuhl-
ann et al., 2005a,b) and that successful retrieval of emo-

ionally arousing information induces greater activity in
oth the amygdala and hippocampus than does retrieval of
motionally neutral information (Dolcos et al., 2005). Fur-

hermore, it has been reported that the effects of psycho-
ocial stress exposure on impairment of working memory
equire concurrent activation of glucocorticoids and the
ympathetic nervous system (Elzinga and Roelofs, 2005).

CONCLUSIONS

he evidence summarized in this paper indicates that
drenal stress hormones influence memory processes in
arious animal and human memory tasks. Acutely admin-
stered or released glucocorticoids dose-dependently en-
ance the consolidation of long-term memory, but impair
rocesses of memory retrieval and working memory. Al-
hough glucocorticoids may act in many different brain
egions to modulate these memory processes, the effects
ppear to depend critically on training-induced BLA acti-

ation and noradrenergic neurotransmission within the
LA. These findings may help to explain why glucocorti-
oids do not uniformly modulate memory for all kinds of

nformation but, rather, preferentially influence the consol-
dation and retrieval of emotionally arousing information.
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